Step of Proof: fast-fib
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
fast-fib
:
n
:
. {
m
:
|
m
= fib(
n
)}
latex
by Assert
n
,
a
,
b
:
.
{
m
:
|
{
k
:
. (
a
= fib(
k
))
((
k
0)
(
b
= 0))
((0 <
k
)
(
b
= fib(
k
- 1)))
(
m
= fib(
n
+
k
))}
{
latex
1
: .....assertion..... NILNIL
1:
n
,
a
,
b
:
.
1:
{
m
:
|
1:
{
k
:
.
1:
{
(
a
= fib(
k
))
((
k
0)
(
b
= 0))
((0 <
k
)
(
b
= fib(
k
- 1)))
(
m
= fib(
n
+
k
))}
2
:
2:
1.
n
,
a
,
b
:
.
2: 1.
{
m
:
|
2: 1. {
k
:
.
2: 1. {
(
a
= fib(
k
))
((
k
0)
(
b
= 0))
((0 <
k
)
(
b
= fib(
k
- 1)))
(
m
= fib(
n
+
k
))}
2:
n
:
. {
m
:
|
m
= fib(
n
)}
.
Definitions
{
x
:
A
|
B
(
x
)}
,
x
:
A
.
B
(
x
)
,
A
B
,
P
Q
,
a
<
b
,
,
n
-
m
,
#$n
,
s
=
t
,
,
fib(
n
)
,
n
+
m
origin